
Rigidity Documentation
Release 1.3.0

Austin Hartzheim

January 03, 2016

Contents

1 Installing 3
1.1 Installing via PyPI . 3
1.2 Installing from Source . 3
1.3 Installing from Git . 3

2 Examples 5
2.1 Correcting Capitalization . 5
2.2 UPC Validation . 6

3 Creating Rules 7
3.1 A Simple Example . 7
3.2 Dropping Rows . 7
3.3 Bidirectional Validation . 8

4 Code Documentation 9
4.1 Errors . 9
4.2 Rigidity . 9
4.3 Rules . 10

5 Indices and tables 15

Python Module Index 17

i

ii

Rigidity Documentation, Release 1.3.0

Rigidity is a simple wrapper to Python’s built-in csv module that allows for validation and correction of data being
read/written to/from CSV files.

With Rigidity, you can easily construct validation and correction rulesets to be applied automatically while preserving
the csv interface. In other words, you can easily upgrade old code to better adhere to new output styles, or allow new
code to better parse old files.

Contents 1

Rigidity Documentation, Release 1.3.0

2 Contents

CHAPTER 1

Installing

1.1 Installing via PyPI

Rigidity is listed on the Python Package Index. So, you may install it via pip:

pip install rigidity

Note that Rigidity only supports Python 3, so you may need to modify your pip command if your default Python
version differs.

1.2 Installing from Source

If you have downloaded one of the source tarballs via Github, you may install it as follows:

tar -xzf rigidity-1.3.0.tar.gz
cd rigidity-1.3.0
sudo python3 setup.py install

1.3 Installing from Git

If you want to install the development version, you may clone our git repository:

git clone https://github.com/austinhartzheim/rigidity.git
cd rigidity
sudo python3 setup.py install1

3

Rigidity Documentation, Release 1.3.0

4 Chapter 1. Installing

CHAPTER 2

Examples

This page includes examples of how to use Rigidity in your own projects.

2.1 Correcting Capitalization

Some spreadsheet providers insist on capitalizing all data. But, readability can be greatly enhanced by capitalizing
words correctly.

Take the following CSV file as an example:

TITLE,AUTHOR
BRAVE NEW WORLD,ALDOUS HUXLEY
NINETEEN EIGHTY-FOUR,GEORGE ORWELL

It would be much more readable in the following form, and could even be included directly on a public-facing website:

Title,Author
Brave New World,Aldous Huxley
Nineteen Eighty-Four,George Orwell

Rigidity’s CapitalizeWords rule allows for selective capitalization of certain letters. By default, it capitalizes the
characters following whitespace. But, we need to capitalize words following hyphens as well (in the case of Nineteen
Eighty-Four). Here is how we do it:

import csv
import rigidity

reader = csv.reader(open('data.csv'))

rules = [
[rigidity.rules.Lower(), # Convert to lower-case first
rigidity.rules.CapitalizeWords(' -')], # Selectively capitalize

[rigidity.rules.Lower(), # Do the same for the author
rigidity.rules.CapitalizeWords(' -')]

]
r = rigidity.Rigidity(reader, rules)

for row in r:
print(', '.join(row))

The CapitalizeWords rule only performs selective capitalization. So, we need to use the Lower rule to convert the
entire string to lower-case first. We also tell the rule to capitalize all letters immediately following a space character or
a hyphen, which allows us to correctly capitalize “Nineteen Eighty-Four.”

5

Rigidity Documentation, Release 1.3.0

2.2 UPC Validation

The following example demonstrates how to validate that a UPC-A code is correct by using the check digit. An
additional test is also performed to ensure that the UPC is unique (which prevents accidental duplicates of what should
be a unique identifier):

import rigidity

rules = [
[rigidity.rules.UpcA(strict=True),
rigidity.rules.Unique()]

]
r = rigidity.Rigidity(reader, rules)

for row in r:
print(row[0])

This example assumes that there is only one column in the CSV file - the column with the UPC code.

Activating strict on the UpcA rule causes the check bit of the UPC to be validated. If the digit is not valid, an error is
raised. This can be deactivated to prevent check digit verification.

6 Chapter 2. Examples

CHAPTER 3

Creating Rules

This page details how you can create your own rules for use in Rigidity.

3.1 A Simple Example

Rigidty rules are all contained in classes subclassing Rule. The simplest example has only an apply() method that
validates or modifies data.

For example, a simple rule to check integers might look like this:

class Integer(rigidity.rules.Rule):
def apply(self, value):

return int(value)

When this rule is used, it attempts to convert the data passed in the value parameter to an integer. If it is successful, it
returns the integer representation of value. If it fails, the ValueError from the cast propagates, preventing the invalid
data from entering or exiting the program.

As a side effect, because the integer representation is returned, all future checks will then be operating on an integer
value, regardless of the original type of value. This can be useful to automatically convert data as it enters the program
rather than having to handle the casting logic later.

3.2 Dropping Rows

It is not always desirable to raise an error when invalid data is discovered. Sometimes the appropriate action is to
ignore the offending row. Rigidity rules can cause a row to be ignored by raising the DropRow exception.

The following code can be used to verify inventory data, preventing the inclusion of any products that are out of stock:

class Inventory(rigidity.rules.Rule):
def apply(self, value):

if isinstance(value, str):
value = int(str)

if not isinstance(value, int):
raise ValueError('Inventory was not an integer value.')

if value < 1:
raise rigidity.errors.DropRow()

return value

If we use this rule to validate this CSV file:

7

Rigidity Documentation, Release 1.3.0

Product,Inventory
T-Shirt,12
Pants,4
Shorts,0
Shoes,-1
Gloves,3

We will get the following list of items that are in stock at the store:

Product,Inventory
T-Shirt,12
Pants,4
Gloves,3

Additionally, if any invalid data is located in the inventory column, an error will be raised to prevent other data from
entering the CSV file.

3.3 Bidirectional Validation

Sometimes it is necessary to validate data differently depending on whether it is being read or written. This is why the
Rule class supports both the read() and write() methods. Implementing these methods in your rules can allow
for greater flexibility of rulesets because the same rules can be used for both reading and writing data.

An example use of this functionality is the built-in Bytes rule. This rule assumes that the data being read is raw
binary data that is best represented as a Python bytes object:

class Bytes(Rule):
'''
When reading data, encode it as a bytes object using the given
encoding. When writing data, decode it using the given encoding.
'''

def __init__(self, encoding='utf8'):
self.encoding = encoding

def read(self, value):
return value.encode(self.encoding)

def write(self, value):
return value.decode(self.encoding)

When the data is read from a CSV file, the read() method is called, which encodes the data using the selected
encoding type and returns it. When it is time to write the data back into a CSV file, the write() method is called to
decode the data using the specified encoding scheme and return the value.

This rule could not be implemented as a unidirectional rule because the csv module would not know how to decode
the bytes object.

8 Chapter 3. Creating Rules

CHAPTER 4

Code Documentation

4.1 Errors

This submodule contains exception classes that are used by Rigidity to handle different actions from the rule classes.

exception rigidity.errors.DropRow
Bases: rigidity.errors.RigidityException

When a rule raises this error, the row that is being processed is dropped from the output.

4.2 Rigidity

This module contains the wrapper class that can be used to adapt your CSV parsing code to use rigidity. Rigidity is a
simple wrapper to the built-in csv module that allows for validation and correction of data being read/written from/to
CSV files.

This module allows you to easily construct validation and correction rulesets to be applied automatically while pre-
serving the csv interface. This allows you to easily upgrade old software to use new, strict rules.

class rigidity.Rigidity(csvobj, rules=[])
A wrapper for CSV readers and writers that allows

skip()
Return a row, skipping validation. This is useful when you want to skip validation of header information.

validate(row)

Warning: This method is deprecated and will be removed in a future release; it is included only
to support old code. It will not produce consistent results with bi-directional rules. You should use
validate_read() or validate_write() instead.

Validate that the row conforms with the specified rules, correcting invalid rows where the rule is able to do
so.

If the row is valid or can be made valid through corrections, this method will return a row that can be
written to the CSV file. If the row is invalid and cannot be corrected, then this method will raise an
exception.

Parameters row – a row object that can be passed to a CSVWriter’s writerow() method.

validate_read(row)
Validate that the row conforms with the specified rules, correcting invalid rows where the rule is able to do
so.

9

Rigidity Documentation, Release 1.3.0

If the row is valid or can be made valid through corrections, this method will return a row that can be
written to the CSV file. If the row is invalid and cannot be corrected, then this method will raise an
exception.

Parameters row – a row object that can be returned from CSVReader’s readrow() method.

validate_write(row)
Validate that the row conforms with the specified rules, correcting invalid rows where the rule is able to do
so.

If the row is valid or can be made valid through corrections, this method will return a row that can be
written to the CSV file. If the row is invalid and cannot be corrected, then this method will raise an
exception.

Parameters row – a row object that can be passed to a CSVWriter’s __next__() method.

writeheader()
Plain pass-through to the given CSV object. It is assumed that header information is already valid when
the CSV object is constructed.

writerow(row)
Validate and correct the data provided in row and raise an exception if the validation or correction fails.
Then, write the row to the CSV file.

writerows(rows)
Validate and correct the data provided in every row and raise an exception if the validation or correction
fails.

Note: Behavior in the case that the data is invalid and cannot be repaired is undefined. For example, the
implementation may choose to write all valid rows up until the error, or it may choose to only conduct the
write operation after all rows have been verified. Do not depend on the presence or absence of any of the
rows in rows in the event that an exception occurs.

4.3 Rules

This submodule contains the built-in rules that are used for filtering and modifying data.

class rigidity.rules.Boolean(allow_null=False, action=1, default=None)
Bases: rigidity.rules.Rule

Cast a string as a boolean value.

ACTION_DEFAULT = 2
When invalid data is encountered, return a set defaut value.

ACTION_DROPROW = 3
When invalid data is encountered, drop the row.

ACTION_ERROR = 1
When invalid data is encountered, raise an exception.

__init__(allow_null=False, action=1, default=None)

Parameters action – take the behavior indicated by ACTION_ERROR, AC-
TION_DEFAULT, or ACTION_DROPROW.

class rigidity.rules.Bytes(encoding=’utf8’)
Bases: rigidity.rules.Rule

10 Chapter 4. Code Documentation

Rigidity Documentation, Release 1.3.0

When reading data, encode it as a bytes object using the given encoding. When writing data, decode it using the
given encoding.

class rigidity.rules.CapitalizeWords(seperators=’ tnr’, cap_first=True)
Bases: rigidity.rules.Rule

Capitalize words in a string. By default, words are detected by searching for space, tab, new line, and carriage
return characters. You may override this setting.

Also, by default, the first character is capitalized automatically.

__init__(seperators=’ \t\n\r’, cap_first=True)

Parameters

• seperators (str) – capitalize any character following a character in this string.

• cap_first (bool) – automatically capitalize the first character in the string.

class rigidity.rules.Contains(string)
Bases: rigidity.rules.Rule

Check that a string field value contains the string (or all strings in a list of strings) passed as a parameter to this
rule.

class rigidity.rules.Drop
Bases: rigidity.rules.Rule

Drop the data in this column, replacing all data with an empty string value.

class rigidity.rules.Float(action=1)
Bases: rigidity.rules.Rule

Cast all data to floats or die trying.

ACTION_DROPROW = 3
When invalid data is encountered, drop the row.

ACTION_ERROR = 1
When invalid data is encountered, raise an exception.

ACTION_ZERO = 2
When invalid data is encountered, return zero.

__init__(action=1)

Parameters action – take the behavior indicated by ACTION_ERROR, ACTION_ZERO, or
ACTION_DROPROW.

class rigidity.rules.Integer(action=1)
Bases: rigidity.rules.Rule

Cast all data to ints or die trying.

ACTION_DROPROW = 3
When invalid data is encountered, drop the row.

ACTION_ERROR = 1
When invalid data is encountered, raise an exception.

ACTION_ZERO = 2
When invalid data is encountered, return zero.

__init__(action=1)

4.3. Rules 11

Rigidity Documentation, Release 1.3.0

Parameters action – take the behavior indicated by ACTION_ERROR, ACTION_ZERO, or
ACTION_DROPROW.

class rigidity.rules.Lower
Bases: rigidity.rules.Rule

Convert a string value to lower-case.

class rigidity.rules.NoneToEmptyString
Bases: rigidity.rules.Rule

Replace None values with an empty string. This is useful in cases where legacy software uses None to create an
empty cell, but your other checks require a string.

class rigidity.rules.RemoveLinebreaks
Bases: rigidity.rules.Rule

Remove linebreaks from the start and end of field values. These can sometimes be introduced into files and
create problems for humans because they are invisible.to human users.

class rigidity.rules.ReplaceValue(replacements={}, missing_action=4, default_value=’‘)
Bases: rigidity.rules.Rule

Check if the value has a specified replacement. If it does, replace it with that value. If it does not, take one of
the following configurable actions: pass it through unmodified, drop the row, or use a default value.

ACTION_BLANK = 5
When no replacement is found, return an empty string.

ACTION_DEFAULT_VALUE = 2
When no replacement is found, return a set default value.

ACTION_DROP = 5
Warning: ACTION_DROP is deprecated due to the name being similar to ACTION_DROPROW.
Use ACTION_BLANK instead.

ACTION_DROPROW = 1
When no replacement is found, drop the row.

ACTION_ERROR = 4
When no replacement is found, raise an exception.

ACTION_PASSTHROUGH = 3
When no replacement is found, allow the original to pass through.

__init__(replacements={}, missing_action=4, default_value=’‘)

Parameters

• replacements (dict) – a mapping between original values and replacement values.

• missing_action – when a replacement is not found for a value, take the behavior
specified by the specified value, such as ACTION_DROP, ACTION_DEFAULT_VALUE,
ACTION_PASSTHROUGH, or ACTION_ERROR.

• default_value – if ACTION_DEFAULT_VALUE is the missing replacement behav-
ior, use this variable as the default replacement value.

class rigidity.rules.Rule
Base rule class implementing a simple apply() method that returns the given data unchanged.

12 Chapter 4. Code Documentation

Rigidity Documentation, Release 1.3.0

apply(value)
This is the default method for applying a rule to data. By default, the read() and write() methods will use
this method to validate and modify data.

Parameters value – the data to be validated.

Returns the validated and possibly modified value as documented by the rule.

Raises rigidity.errors.DropRow when the rule wants to cancel processing of an entire row, it
may do so with the DropRow error. This signifies to the rigidity.Rigidity class that
it should discontinue processing the row.

read(value)
When reading data, it is validated with this method. By default, this method calls the apply() method of
this class. However, you may override this method to achieve different behavior when reading and writing.

Parameters value – the data to be validated.

Returns the validated and possibly modified value as documented by the rule.

Raises rigidity.errors.DropRow when the rule wants to cancel processing of an entire row, it
may do so with the DropRow error. This signifies to the rigidity.Rigidity class that
it should discontinue processing the row.

write(value)
When writing data, it is validated with this method. By default, this method calls the apply() method of
this class. However, you may override this method to achieve different behavior when reading and writing.

Parameters value – the data to be validated.

Returns the validated and possibly modified value as documented by the rule.

Raises rigidity.errors.DropRow when the rule wants to cancel processing of an entire row, it
may do so with the DropRow error. This signifies to the rigidity.Rigidity class that
it should discontinue processing the row.

class rigidity.rules.Static(value)
Bases: rigidity.rules.Rule

Replace a field’s value with a static value declared during initialization.

class rigidity.rules.Strip(chars=None)
Bases: rigidity.rules.Rule

Strip excess white space from the beginning and end of a value.

class rigidity.rules.Unique(action=1)
Bases: rigidity.rules.Rule

Only allow unique values to pass. When a repeated value is found, the row may be dropped or an error may be
raised.

ACTION_DROPROW = 2
When repeat data is encountered, drop the row.

ACTION_ERROR = 1
When repeat data is encountered, raise an exception.

__init__(action=1)

Parameters action – Accepts either ACTION_ERROR or ACTION_DROPROW as the be-
havior to be performed when a value is not unique.

4.3. Rules 13

Rigidity Documentation, Release 1.3.0

class rigidity.rules.UpcA(strict=False)
Bases: rigidity.rules.Rule

Validate UPC-A barscode numbers to ensure that they are 12 digits. Strict validation of the check digit may also
be enabled.

__init__(strict=False)

Parameters strict (bool) – If true, raise a ValueError if the given UPC code fails the check
digit validation.

apply(value)
Cast the value to a string, then check that it is numeric. Afterwards, zero-pad the left side to reach the
standard length of 12 digits.

Raises ValueError when strict mode is enabled and the given UPC code fails the check digit
validation.

class rigidity.rules.Upper
Bases: rigidity.rules.Rule

Convert a string value to upper-case.

14 Chapter 4. Code Documentation

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

15

Rigidity Documentation, Release 1.3.0

16 Chapter 5. Indices and tables

Python Module Index

r
rigidity, 9
rigidity.errors, 9
rigidity.rules, 10

17

Rigidity Documentation, Release 1.3.0

18 Python Module Index

Index

Symbols
__init__() (rigidity.rules.Boolean method), 10
__init__() (rigidity.rules.CapitalizeWords method), 11
__init__() (rigidity.rules.Float method), 11
__init__() (rigidity.rules.Integer method), 11
__init__() (rigidity.rules.ReplaceValue method), 12
__init__() (rigidity.rules.Unique method), 13
__init__() (rigidity.rules.UpcA method), 14

A
ACTION_BLANK (rigidity.rules.ReplaceValue at-

tribute), 12
ACTION_DEFAULT (rigidity.rules.Boolean attribute),

10
ACTION_DEFAULT_VALUE (rigid-

ity.rules.ReplaceValue attribute), 12
ACTION_DROP (rigidity.rules.ReplaceValue attribute),

12
ACTION_DROPROW (rigidity.rules.Boolean attribute),

10
ACTION_DROPROW (rigidity.rules.Float attribute), 11
ACTION_DROPROW (rigidity.rules.Integer attribute),

11
ACTION_DROPROW (rigidity.rules.ReplaceValue at-

tribute), 12
ACTION_DROPROW (rigidity.rules.Unique attribute),

13
ACTION_ERROR (rigidity.rules.Boolean attribute), 10
ACTION_ERROR (rigidity.rules.Float attribute), 11
ACTION_ERROR (rigidity.rules.Integer attribute), 11
ACTION_ERROR (rigidity.rules.ReplaceValue attribute),

12
ACTION_ERROR (rigidity.rules.Unique attribute), 13
ACTION_PASSTHROUGH (rigidity.rules.ReplaceValue

attribute), 12
ACTION_ZERO (rigidity.rules.Float attribute), 11
ACTION_ZERO (rigidity.rules.Integer attribute), 11
apply() (rigidity.rules.Rule method), 12
apply() (rigidity.rules.UpcA method), 14

B
Boolean (class in rigidity.rules), 10
Bytes (class in rigidity.rules), 10

C
CapitalizeWords (class in rigidity.rules), 11
Contains (class in rigidity.rules), 11

D
Drop (class in rigidity.rules), 11
DropRow, 9

F
Float (class in rigidity.rules), 11

I
Integer (class in rigidity.rules), 11

L
Lower (class in rigidity.rules), 12

N
NoneToEmptyString (class in rigidity.rules), 12

R
read() (rigidity.rules.Rule method), 13
RemoveLinebreaks (class in rigidity.rules), 12
ReplaceValue (class in rigidity.rules), 12
Rigidity (class in rigidity), 9
rigidity (module), 9
rigidity.errors (module), 9
rigidity.rules (module), 10
Rule (class in rigidity.rules), 12

S
skip() (rigidity.Rigidity method), 9
Static (class in rigidity.rules), 13
Strip (class in rigidity.rules), 13

19

Rigidity Documentation, Release 1.3.0

U
Unique (class in rigidity.rules), 13
UpcA (class in rigidity.rules), 13
Upper (class in rigidity.rules), 14

V
validate() (rigidity.Rigidity method), 9
validate_read() (rigidity.Rigidity method), 9
validate_write() (rigidity.Rigidity method), 10

W
write() (rigidity.rules.Rule method), 13
writeheader() (rigidity.Rigidity method), 10
writerow() (rigidity.Rigidity method), 10
writerows() (rigidity.Rigidity method), 10

20 Index

	Installing
	Installing via PyPI
	Installing from Source
	Installing from Git

	Examples
	Correcting Capitalization
	UPC Validation

	Creating Rules
	A Simple Example
	Dropping Rows
	Bidirectional Validation

	Code Documentation
	Errors
	Rigidity
	Rules

	Indices and tables
	Python Module Index

